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ABSTRACT 

Some connections between strongly regular graphs and finite Ramsey theory are 
drawn. Let B, denote the graph K, + K”. If there exists a strongly regular graph with 
parameters (u,k,X,p), then the Ramsey number r(Bh+,,Bt;--Bk+S~l)~u+l. We 
consider the implications of this inequality for both Ramsey theory and the theory of 
strongly regular graphs. 
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INTRODUCTION 

We discuss some connections between strongly regular graphs and finite 
Ramsey theory. The ideas involved in the theory of strongly regular graphs 
are linear algebraic, and their consequences are employed in this paper, even 
though linear algebraic techniques do not appear explicitly. Thus this paper 
can be regarded as an instance of the application of those techniques in 
another, related field. All graphs in this paper are both finite and simple. Let 
G, and G, be graphs. Then the Ramsey number, r(G,, G,), of G, and G, is 

the smallest integer n such that in any 2coloring (E,, E,) of the edges of K, 
either (E,) 2 G, or (E,) > G,. So, thinking of E, and E, as being “red” and 
“blue” edges respectively, if the edges of K, are colored red and blue, then 
there exists either a red G, or a blue G,. Furthermore, since n is minimal, 
there must exist a graph G on n - 1 vertices such that G g G, and its 
complement Gz G,. A strongly regular graph with parameters (v, k, h, p) [or 
more briefly we say a (v, k, A, p))-graph] is a graph which is regular of degree 
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k on o vertices and is such that there exist exactly h (p) vertices mutually 
adjacent to any two distinct adjacent (nonadjacent) vertices. Excellent ele- 
mentary introductory articles’ on strongly regular graphs by Cameron and 
Seidel appear in [ 11 and [3] respectively. Notice that if G is a (u, k, A, p))-graph, 
thenGisa(u,v-l-k,u-2k+~-2,u-2k+X)-graph.NowletB,(n~l) 
denote the graph K, + E,, (see [9] for notation). Then the interaction between 
strongly regular graphs and Ramsey theory which we wish to discuss is made 
formally by the following observation. 

OBSERVATION. Zf there exists a (v, k, A, p)-graph G, then 

r(Bh+P B,-2k+p-l )a+1. 

This follows because G g BAtI, C?g BuPzktpPl, and G has exactly u 
vertices. Now we can consider this inequality from two viewpoints. If a 
particular (zi, k, A, p))-graph exists, then this determines a lower bound for the 
corresponding Ramsey number. We give an example of this approach in 
Section 1. On the other hand, if we can independently determine an upper 
bound for a particular Ramsey number, this gives some information on the 
nonexistence of strongly regular graphs with the appropriate parameters (and 
usually of course on the nonexistence of a much larger class of graphs). We 
take this viewpoint in Section 2. We mention [6], [7], [lo], [ll], [12], [13], and 
an article by T. D. Parsons in [l] for readers interested in this area. 

This paper essentially contains just two original theorems, viz., Theorem 2 
and Theorem 3. These theorems are discussed in Section 2 but not proved. 
We include their proofs as appendices. We do not recommend the reader to 
pursue all the details of these proofs, but simply to note their elementary 
nature and their dependence on the lemma stated at the beginning of 
Appendix 1. 

1. A SPECIAL CASE 

We prove in [12] the following theorem and corollary: 

THEOREM 1. Zf 2(m+n)+l>(n-m)‘/3, then r(B,,,B,)42(m+n 
+I>. By refinement, r(B,_,, B,,)~4n -1 and, if n = 2 (mod31, then 

T( Bn_2, B,) G 4n -3. 

COROLLARY. Zf 4n + 1 is a prime power, then r( B,,, B,,) = 4n +2. Zf 
4 n + 1 cannot be expressed as the sum of two integer squares, then r( B,, , B,, ) 
< 4n + 1. In the first example of the latter, r( B,, B,5) = 21. 
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The proof of Theorem 1 yields, as pointed out by T. D. Parsons [l], 

r(B,,B”)~m+n+2+[~ 3( m2 + mn + n2 ) 1, We can indicate the main 
idea of the proof of the theorem by directly proving the Corollary. This proof 
illustrates the first viewpoint on the observation made in the introduction. 

Proof of the Corollary. Let p, n 2 1. Suppose there exists a 2coloring 
(E,, E,) of the edges of K, such that ( Ei) IJJ B, (i = 1,2). Let M be the 
number of monochromatic triangles produced by this coloring. Then a 
classical result of Goodman [8] gives 

M94P-1)(P-5) 
24 * 

On the other hand, since on each red (blue) edge there exist at most n - 1 red 
(blue) triangles, 

Mc l&I(n-I)+ IE2l(n-1) = p(p--l)(n-1) 

3 6 ’ (2) 

From (1) and (2), p G 4n + 1. Hence r(B,, B,) < 4n +2. Suppose p = 4n + 1. 
Then equality holds in (1) and (2). Write G = (E,). Goodman’s result also 
tells us that since equality holds in (l), G is regular of degree 2n. Equality in 
(2) implies that on each edge of G there are exactly n - 1 triangles and on 
each edge of G there are exactly n - 1 triangles. So G is a (4n + 1,2n, n - 
1, n )-graph. Hence, using our observation, r( B,, B,) = 4n + 2 if and only if 
there exists a (4n + 1,2n, n - 1, n)-graph. Such graphs [5] are called con- 
ference graphs and are well known to exist if 4n + 1 is a prime power. No 
such graph exists if 4n + 1 cannot be expressed as the sum of two integer 
squares. In the first example of the latter, T( Bs, B,) = 21. This is proved by 
giving [12] a direct construction of a graph on 20 vertices with the required 
properties. 4 

2. RESULTS 

We prove in the appendices: 

THEOREM 2. Suppose 1 <k < n. Then r(B,, I?,) = 2n +3 for n 3 
(k-1)(16k3+16k2-24k-lO)+l. 
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THEOREM 3. 

(i) r(B,,B,)=2n+3 (na2). 

I 

2n+6 (2<n<ll), 

(ii) 2n+3Gr(B,,B,)G 
2n+5 (12Gn<22), 

2n+4 (23GnG37), 

2n+3 (na38). 

COROLLARY. r(B,, B,) = 2n f6, n = 2,5,11. 

COMMENT. We now simply interpret these results (or at least some of 
them) in the context of our viewpoint that upper bounds for Ramsey numbers 
provide information on the existence of certain strongly regular graphs. 

Let t a 1. Write n = 3t - 1, and let G(n) denote (if it exists) a (6t +3,2t 
+2,1, t + l>graph. Then if G(n) exists, r(B,, B,,) 2 2n +6, and so by Theo- 
rem 3(ii), r( B,, B,) = 2n +6. Now someone (see Cameron [1]) with knowl- 
edge of the theory of strongly regular graphs would proceed as follows. If 
G(n) exists, then (using the so-called integrality condition) 

(U-1)(/Ph)-2k 

is an integer, where k=2t f2, h=l, p=t +l, and v=6t+3. Hence 
t = 1,2,4,10. The line graph L(K, s) of K, s, the complement of L( Ka), and 
the line graph of the 27 lines on a’cubic surface show respectively that G(2), 
G(5), and G( 11) exist. However, as yet we have not determined whether 
G(29) exists. The only other general necessary conditions for the existence of 
a (0, k, A, p)-graph are the so-called Krein conditions (see Seidel [3]). This 
states that if 

r+s=X-p and rs=p-k (T>S), 

then 

(i) (r+l)(k+r+2rs)~(k+r)(~+l)~, 
(ii) (s+l)(k+s+2rs)<(k+s)(r+1)2. 

Inourcaser+s= -lO,rs= -ll,andsor=l,s= -11. Weseethatthese 
values of r, s, and k = 22 do not satisfy the second Krein condition. Hence no 
G(29) exists. 
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Now suppose we know nothing about the theory of the existence of 
strongly regular graphs. Then, by Theorem 3(ii), no G(n) exists for n 2 12. So 
in particular G(29) does not exist. Hence we do not require the Krein 
conditions .to prove the nonexistence of G(29). However, against this the 
existence of G(8) is undecided by our Ramsey theory, whereas the integrality 
test shows that no G(8) exists. 

Generally we may interpret Theorems 2 and 3 as follows: “if r( B,, B,) G 
N, then there exists no (0, k, m - 1, n +2k - u + 1)-graph with v 3 N.” 

Of course a much stronger statement is also true, viz., for 0 2 N there 
exists no graph G on o vertices such that: (i) on each edge of G there are at 
most m - 1 triangles, and (ii) on each edge of G there are at most n - 1 
triangles. 

3. CONJECTURES 

We have conjectured in [12]: 

CONJECTURE 1. There exists a constant A > 0 such that 

Our theorems support this conjecture, although of course they are a very 
long way from giving the whole picture. A well-known (253,112,36,60)-graph 
shows that r(Ba,, B,,) > 254 and so A 3 2. In this context, a 
(275,112,30,56)-graph and a (162,56,10,24>graph show respectively that 
r(B,,, B,,,) 2 276 and r( B,,, B,,) 2 163. Notice that these parameters are 
welI away from the parabolic region of Theorem 1. Conjecture 1 would imply, 
if true, the truth of: 

CONJECTURE 2. There exists a constant A (A 2 2) such that for every 
(u, k, A, p)-graph we have 

wherea=k-X-l andp=k-p. 

COMMENT. This conjecture is true for conference graphs. It is also true 
when X = ~1. For readers not familiar with the parameters (Y and /3, it is 
worthwhile recalling in this context that if we write 11 v - k - 1, then since 
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k(k -A - l)= zj.l, 
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y++. 

Finally we would like to mention that if instead of discussing r( B,, B,) we 
consider the Ramsey number r(K,, + g,,), then in [6] and [13] conference 
graphs are used to provide lower bounds. In [13] especially the asymptotic 
lower bounds are discussed in some depth. 

APPENDIX 1. PROOF OF THEOREM 2 

Almost all of our notation in this section will be standard [2,4,9]. There is 
one exception. Let G be a graph and x E V(G). Then N(x) denotes the 
neighborhood of G, and for any subset Y c V( G ) we write 

Y(x) =: N(X)rlY. 

Furthermore if xi, x,E V(G) we write 

Y(x,nx,)=:Y(x,)nY(r,) 

and 

Y(x,Ux,)= :Y(x,)UY(x,). 

This is simply a notational device to restrict the number of symbols used. 
In the proof of the theorem below we shall need to consider a 2coloring 

(E,, E,) of the edges of &,,+a (n a 1). As above, we call the edges of E, red 
and those of E, blue. In general a suffix i (i = 1,2) will refer to the ith color. 
For example, if o E V(G), then Ni( v) is the red neighborhood of u, and if 

Y c V(&.,+s ), then Y,(u) is the blue neighborhood of o contained in Y. 
Again if Y c V(Kant3 ), then (Y )i is the subgraph of Kant3 with vertex set Y 
and edge set consisting of all red edges with both end vertices in Y. We abuse 
this notation very slightly when we present and use the next lemma, but it is 
only in this context that we shall do this and no confusion should arise. This 
lemma plays a crucial role in the proofs of both Theorems 2 and 3. 
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LEMMA. Let A,, A,,... ,A,,, (m 2 2) be subsets of a finite set A. Suppose 
6 and p are integers such that for all i,jE{l,Z,...,m}, i#i, we have 
~A,uA,[ >S and lAinA, Gp. Then 

(1) 2(m-1)lAl > m(m -1)6 -2(m -2)(2\A,flA,I), where the summu- 
tion is over all unordered pairs {i, i}, i, iE { 1,2,. . . , m}, i # j. 

(2) 2lAI > ma - m(m -2)~. 

Proof. Choosei,jE{l,Z ,..., m},i#i. Then 

IAil + IAil = lAiUAil + lAinAil. 

Summing over all possible such pairs i and j we obtain 

(m-l) = x IA,UA,I+ 2 \A,fTA,I. (3) 
i#i itj 

But 

2 f$ [Ail- 2 lAinAil* (4) 
i=l i#i 

The lemma now follows from (3), (4) and the definitions of 8 and P. n 

THEOREM 2. Suppose k and n are integers such that 1 G k < n. Then 

r(B,,B,)=Zn+3 

providedn>(k-1)(16k3+16k2-24k-lO)+l. 

Proof. We may in fact suppose k > 1, since the case k = 1 is proved in 
[12]. Since K,+1 n+l does not contain a B,, and its complement does not 
contain a B,, we have 

r(Bk, B,)BZn+3. (5) 

Unfortunately to prove equality is not so straightforward. Suppose that there 
is a Z-coloring (E,, E,) of the edges of K2n+3 such that (E,) I$ B, and 
(E,) 2 B,. Supposen>(k-l)(16k3+16k2-24k-lO)+l. Choose(E,, E2) 
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to be a 2coloring of the edges of Ksn+a such that (E,) 2 B, and ( E2) f, B,,. 
Choose (Y, j3~ V(k,,+,) so that L$E E, and 1 N,(a) nhr,(p) 1 is as large as 
possible. Write D = Ni( LY) nN,( p), A = NJ a) nN,( p), B = N,( a)\A, C = 
Na(P)\A, and H = BUCUD (see Figure 1; the broken lines indicate red 
edges). We assume ) BI > ICI. 

We emphasize the choice, in particular the maximality, of 1 D 1, It will play 
a prominent role throughout the subsequent arguments. We proceed by a 
series of propositions. 

PROPOSITION 1. 

(1) IAl <n-l 
(2) IHj=(2nJ:l)-lAIan+2, 
(3) I(BUD),(b)lGk-I (DEB), I(CUD),(c)l~k-I (cEC)> [B,(d)1 

<k-l, IC,(d)l <k-l, IOI( <k-l (dED), 
(4) IH,(x)~G(~-~)+IDI, ID,(x)lGk-l(xEBUC), 

(5) IH,(d)l~2(k-I)(dED), 

(6) IHz(x)l “(IHI -I)- max{2(k-l), (k-l)+ IDI} (xEH). 

Proof. The proof follows directly from the various definitions. For exam- 
ple Proposition l(4) (which we abbreviate to P.1.4) is proved by using P.1.3 
and the maximality of 1 D I. n 

B 

FIG. 1. 
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When the reader is in doubt, he should refer back to this proposition, 
which will not always be cited. 

PROPOSITION 2. (H)a > K,. 

Proof. Write G = (B)a. Then the minimal degree, 6(G), of G satisfies, 
using P. 1.3, 

G(G)a(J3-k. (6) 

If G z K,, then, by Turan’s theorem [4], 

IE(G)l G P12/4. (7) 

Hence, from (6) and (7), I BI G 2k. Therefore, using P.1.1 and I BI 2 ICI, 

IDI =@n++(IAl+ IBI + ICI) 
a(n+2)-4k. (8) 

WenowusethesameargumentforK=:(D),.Againif KZK,, lDlG2k. 
So from (B), n < 6k -2. This is a contradiction. H 

PROPOSITION 3. I DI B 2k2 + 1. 

Proof. Let ui, v2, 0s be the vertices of a triangle in (H),. Write 8 = 
max{2(k-l), k-l+(DI}.Then,fromP.1.6,fori,j~{1,2,3},i#j, 

IH2(oin# Ikq -2(e+i). (9) 

Since (E2) 2 B,, from (9) 

IA2(“in”i)lqn-l)-(l~~ -2(0+1)) 

=IAI-n+20. (16) 

By the maximality of ID/, for all pairs i and i above, IA,(vinvi)IGIDI. 
Hence 

IA2(“iu”j>la I Al - IDI’ (11) 

WriteAi=A2(ui)(i=1,2,3),CL=IAl-72+28,6=IAl-lIDI,andm=3. 
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Then from the lemma, (lo), (ll), and P.l.l, 

Now suppose 8 = 2(k - 1). Then 1 DJ G k - 1, and from (12) n G 15k - 17, 
which is not true. On the other hand, if 8 = (k - 1) + 1 D 1, then 

(13) 

and so from (13) and the magnitude of n, 1 D 1 > 2k2 + 1. I 

PROPOSITION 4. (0) 1 has at least 2k + 1 independent vertices. 

Proof. Let G = ( D)l. Then, from P.1.3 and P.3, G is a graph with 
maximal degree at most k - 1, and G has at least 2k2 + 1 vertices. The result 
now follows as an elementary exercise in graph theory. n 

PROPOSITION 5. IDl+(2k-l)jA(]/(2k+l)-(8k2-14k+3). 

Proof. Let ur, v2,. . . ,vZkfl be distinct independent vertices of (0) 1. Let 
m=2k+l, and writeAi=A2(vi) (i=1,2,...,m). Now with minor modifi- 
cations (allowing for the fact that the ui’s belong not only to H but also to D) 
we repeat the argument of P.3. Let i, LIZ { 1,2,. . . ,m}, i # i. From P.1.5 

Hence, since (E,) ;s! B,, and using P.1.2, 

lAinAil G(n-l)-IHz(vinui)l 

<(n-l)- IHI +4(k-1)+2 

< 4k -5. (14) 

Again, by the maximality of 1 D 1, 
IA,(vinuj)I G IDI -2. Hence 

and since ar, PE N,(vi)nN,(vi), we have 

IA,UA,I 2 IAl - IDI +2. (15) 

Write 6 = I A I - I D I + 2, p = 4 k - 5. Then the result follows from the lemma, 

using m = 2k + 1 and Equations (14) and (15). n 
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PROPOSITION 6. 

(1) Zfx,, X,E D and X,X,E E,, then 

IH&qn”s)l~ n -4(/c - 1). 

(2) [Alan-4(k-1). 

Proof. (1): From P.1.5 

IH,(x,nr,>I+IHI -2)-4(k-1) 

=(2n-1)-IAl -4(k-1). (16) 

The result now follows from P.l.l 
(2): Since I DI 2 2k2 + 1 and ( D)l 1 B,, there exists at least one blue 

edge xix2 with xi E D, i = 1,2. The result now follows from (16) and the fact 
that ~H2(x,~x2)l~n-l,since(D),~B,. W 

PROPOSITION 7. ( D)l does not contain 2 independent edges xlyl and 
x,y, such that all of x1x2, x1 y,, ylx2, y1y2 are blue edges. 

Proof. Suppose (D)l does contain 2 such independent edges. Then we 
may choose xi, yi E D (i = 1,2) so that xi yi and x2 yz are red edges and such 
that x1x2, xiys, yrx,, yly2 are all blue edges. Then, for i = 1,2, since CY, BE 
Ni(x,fly,) and since (E,) f! B,, 

Hence 

IAl(xinyi)l =z k -3. 

IA2CXi’JYi)la IAl -(k-3). (17) 

Therefore, with no loss of generality, we may suppose that 

IL42h)l~ 
IAl -(k-3) 

2 . 

Now, from (17), 

(18) 

(19) 
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Therefore from (19), again with no loss of generality, we may suppose that 

IAd”In4 2 
IA,h)l-(k-3) 

2 ’ (20) 

Hence, from P.6.1, P.6.2, (18), and (20) and since (Ea) 2 B,, 

q+13 +[n-4(k-1)], 

i.e., n < 23k -33, which is a contradiction. n 

PROPOSITION 8. Write X=BUC, and let D*={dED: IX,(d)lal}. 

Then 

ID*) a IDI -(2k2-6k+7). 

Proof. Firstly notice that at most one element of D is isolated in (H) I, 
i.e., 1 H,(d)1 2 1 f or all but at most one element of D. Otherwise choose two 
such elements d,, d,~ D, d, # d,. Then, using P.1.2, 

n-l>IH,(d,f%,)(~]HI -2an. 

Now write G = ( D)l. Th en G is a graph with at least 2k2 + 1 vertices 
and maximal degree at most (using P.1.3) k - 1. Since G has at most one 
independent edge xy, an elementary exercise in graph theory (see Figure 2) 
shows that G contains at least I D I - [2 + 2( k - 2) + 2( k - 2)‘] isolated vertices. 
This, together with the opening remark, proves the proposition. n 

>(I - >). 

(I - ) 

FIG. 2 
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PROPOSITION 9. IDI <[(2n+l- ]A])(k-1)+2k2-6k+7)],‘k. 

Proof. Let E,(BUC, 0) denote the set of red edges with one end vertex 
in BUC and the other end vertex in D. Then, from P.8, 

Since (E,) ;1 B,, if xE BUC, then I D,(x)l < k - 1. Hence 

IE,(BUC, D)l< ]BuC](k-1) 

=(2n+l-]A]-jD])(k-1). (22) 

The proposition follows from (21) and (22). 

Proof of Theorem 2. From Propositions 5 and 9 

k(2k - 1) I A] - k(2k + 1)(8k2 - 14k +3) 

<(2k+1)(2n+l-]A])(k-1)+(2k+1)(2k2-6k+7). 

Now use P.6.2 to obtain a contradiction to the magnitude of n. Hence 
r(B,, B,) G 2n +3 and so, from (5), r(B,, B,) = 2n f3. W 

A similar, but very much more delicate, analysis proves Theorem 3(ii). 
Theorem 3(i) is proved in [12]. 

APPENDIX 2. PROOF OF THEOREM 3(ii) 

The corollary to Theorem 3 is proved in Section 2, and Theorem 3(i) is 
proved in [12]. 
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THEOREM 3(ii). 
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NOTATION AND ASSUMPTIONS. It follows from Theorem 1 that 
r( B,, B,,) =G 2n +6 for 2 G n G 10. Therefore, we shall assume henceforth that 
n 2 11. Suppose that (E,, E,) is a 2coloring of the edges of KBn+l such 
that (E,) g B, and (E,) 2 B,, and where 

2n+6 (2Gn~ll), 

2nf5 (12<n<22), 

2n+4 (23+&37), 

2n+3 (na38). 

6 if n=ll, 
t= 5 

1 

if 12GnG22, 
4 if 23GnG37, 
3 if n~=38. 

We shall show that the assumption that such a 2coloring exists leads to a 
contradiction, and this will establish the theorem. We retain all the notation 
introduced in the proof of Theorem 2 (see Appendix l), i.e. in the case when 
t = 3 and n is large. For example (Y, p, A, B, C, and D are defined as before, 
and we use the same notational tricks. In P.l we are now dealing with 2n + t 
vertices rather than simply 2n + 3 vertices, so P.1.2 becomes 1 H 12 (2n + t - 
2) - 1 A 1 B n + 2. We recall, since this was buried in the proof, that X = BUC. 
We shall in addition use the following notation. Let h,, h,E H (h, f h2). 
Write B(h,,h,)=IH,(h,Uh,)l, w(h,,h,)=IN,(h,)nN,(h,)n {a,P}I. The 
proof now proceeds, as for Theorem 2, by a series of Propositions: 

PROPOSITION 10. r(B,,B,)> 2n +3. 

Proof. Put k = 2 in Equation (5). 

PROPOSITION 11. Let h,, h,E H and h,h,E E,. Then 

(1) IAdhlnhdl~ IDI - dh,, ha, 
(2) IA,(h,Uh,+ IAl - IDI + a(h,> h,), 
(3) IA,(h,nh,)(~(AI-n-t+3+B(h,,h,), 
(4) b,(h$Jhdl B n + t -3- d(h,, h2). 
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Proof. (1): This is an immediate consequence of the definition of D. 
(2): This follows from P.ll.l. 
(3): By P.l.l and P.1.2 

n -1 +,h%)l+ IH,(h,f-%)l 

=lA,(h,~he)t+[lHI-2-l~1(h1Uh,)/] 
=IA,(h,nh,)l+[2n+t-4-~Al-e(h,,h,)]. 

(4): This follows from P.11.3. 

PROPOSITION 12. Let h,, h,E H (h, # h,). 

(1) h,h,E E, (h,, h,E D). 
(2) 048(hl,hz)92(/DI +l), o(h,,h,)aO. 
(3) 4 z= e(h,, h,)a t -2; w(h,, h,) = 2 (h,, h,E 0). 
(4) w(h,, h,) = 1 (h,~ B, h,~ D or h,~ C, h,~ D). 
(5) Oc8(h,,h,)~ID1+3,o(h,,h,)=l(h,EX,h,ED). 

Proof. (1): This follows because w( h,, h,) = 2. 
(2): From P.1.4 and P.1.5, I~~(x)I<max{2,1+ IDI} (~EH). Hence 

e(h,,h,)~2(iDi +1>. 
(3): Let d,, d,~ D. Then, from P.12.1, P.l.l, and P.1.2, 

=(2n+t-2-IAl)-2-B(d,,d2) 

Hence B(d,,d,)B t -2. Also, from P.1.5, B(d,,d,)G4. By definition 
o(d,, d,) = 2. 

(4): From the definition of w. 
(5): By P.1.4 and P.1.5. 

PROPOSITION 13. 

(1) Suppose I DI G 2. Then there exist h,, h,, h,E H such that h,h, E E, 
(i # j; i, i= 1,2,3). 

(2) Suppose ) DI = 2. Then there exist h,, hzE D, h,E H such that h,h, E 
E,, i = 1,2. 
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Proof. Nowsuppose)DI=2.Then21BI~n+t-3>7.HenceJBI~3. 
Let D = {h,, ha}. By P.12.1, h,h,E E,. By P.1.3, IB,(h,)l G 1. So there exists 
~,EB with h3hi~E, (i=1,2). 

SupposeID(=l.Then21BIbn+t-2~8.HenceIBI~4.Leth,ED. 
Since 1 B,(h,)J G 1, there exist b,, b,, b,E B2(hl). Now for all bE B, by P.1.3, 
)B,(b)\<l. Hence for some &j-1,2,3, i#i, we have bibiEE,. Write 
h, = bi and h, = b. 

Suppose IDI LO. Then 2(BI >n+t-129. Hence IBla5. Since 
I B,(b)\ G 1 for all b E B, it follows that there exist h,, h,, h,E B such that 
hih,EE,(i#j;i,i=1,2,3). w 

PROPOSITION 14. 

(1) Zft~{5,6} then JD(a2. 
(2) IftE{3,4} then IDI a3. 

Proof. Suppose 1 DI G 2. Select (see P.13) h,, h,, h,E H so that h,h, E E, 
(i#i;i,j=1,2,3).WriteAi=A,(hi),i=1,2,3;6=IAl-JD(;and~=JAl 
- n - t +5+21 DI. Then, by P.11.2 and P.12.2, lA,UA,l > 6, and by P.11.3 
and P.12.2, I AinA i I G p. Then, by the second part of the lemma of Appendix 
1 (which we shall denote by L.2, etc.) with m = 3 and using P.l.l, 

2(n-l)a3(6-p)=3(n+t-5-3lDI). (23) 

If I D I G 1 and t E { 5,6} or if I D I G 2 and t E {3,4}, (23) yields a contradic- 
tion to the magnitude of n. n 

PROPOSITION 15. I DI 3 3. 

Proof. By P.14 we may suppose that t E {5,6} and I DI = 2. Select (see 
P.13.2) h,, h,E D, h,E H so that h,hiEEz, i = 1,2. Write Ai = A,(h,), 
i=1,2,3,6=IAI-_ID(+l, andp=JAJ-n+6-t+ID\.Then,byP.11.2, 
P.12.3, and P.12.4, IA,UA,I as, and by P.11.3, P.12.3, and P.12.5, lAinAil 
G p. Therefore, by L.2 with m = 3 and using P.l.l, 

This is a contradiction of the magnitude of n for t E { 5,6}. n 

PROPOSITION 16. 1 DI a lo- t, tE {3,4,5,6}. 
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Proof. Suppose 1 D 1 G 9 - t. Since, by P.15, 1 D 1 > 3, we may select 
h,, h,, h,E D, hi # hi (i # i; i, i= 1,2,3). By P.12.1, hihiEE,. Write Ai = 
AI( 6 = n -7+ t, and p = 1 DI -2. Then, by P.11.4 and P.12.3, lA,UA,l 
26, and by P.11.1 and P.12.3, [A,f~A,l<p (iiu; i,j=1,2,3). Therefore, 
by L.2 with m = 3 and using P.l.l, 

This is a contradiction of the magnitude of n. n 

NOTATION. Let x be any real number. Then 1x1 and [xl denote 
respectively the lower and upper integer part of x. 

PROPOSITION 17. 

E’zenID*IZ=IDI-1. 

Let D*= (dED: lx,(d)1 a[&$]), tE(3,4,5,6). 

Proof. Suppose I D*I G I DI -2. Choose d,, ds~ D\D*. Then, by P.12.1 

and P. 12.3, 

This leads to a contradiction. 

NOTATION. Write 1c =I{dED:IX,(d)l=l}i and y =l{d~D: 

IX,(d)l=O}/. Then 0 Gx<lDI and, from P.17, OGy<l. Recall that in 

general IX,(d)l G 2. 

PROPOSITION 18. IDI<[(2n+t-IAI+r+2y-2)/3]. 

Proof Let E,( D, X) denote the set of red edges with exactly one end 
vertex in D and exactly one end vertex in X. Then, since IDl( x) ( G 1 for all 
x E x (P. 1.4), 

IE,(D,x)IGIxI=~~+~-IA~-~-~. (24) 
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However, since 1X,( d)l g 2, 

The result now follows from (24) and (25). n 

NOTATION. Let m = lo- t (tE (3,4,5,6}). Then, by P.16, 3G m G (D(. 

Choosemdistinct elements dr,ds,...,d,,,~D so that 8:L11Xl(di)l is as small 
as possible. Write “D(m) = {d,, d,,.. ., d,,}. Suppose “D(m) contains exactly a 
elements d with IX,(d)l= 1 an d exactly h elements d with 1X,( d ) ( = 0. Then, 
by definition, O<a<x<lDI and OGbGyGl, u+b<m. Let ‘l”(m) de- 

m 
note the set of 2 

( 1 
unordered pairs {i, i}, i # j, chosen from the set 

{1,2,... ,m}. Write 

A(m)= 2 e(d,,dj). 
“(m ) 

PROPOSITION 19. h(m)G4(;)-(m-l)(a+2b). 

Proof. IX,(d)l E {0,1,2} f or all dg Q(m), and 8(d,, di)<jX,(d,)l 

+IX,(di)lfor all {i,j}EY’(m). Hence 

+3a[m-(a+b)]+ub+2b[m-(ufb)]. 

The result now follows. n 

PROPOSITION 20. a + b < lo- t. 

Proof. Write A,=A,(d,), i=l,2,...,m (m=lO-t)). Let 6=IAI- 
IDI +2. Then, by P.11.2 and P.12.3, IA,UA,J 3 6, and by P.11.3, IA,nA,I 
<(A( -n-t+3+B(d,,di) for all {i,i}EC?(m). Then, by L.l, 

2(9-t)lAI +lO--t)(S--t)(lAl - IDI +2) 

-2(X--1)( 2 (IAl -n-t+3)+A(m)). (26) 
“Y( 7,1 ) 
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Using P.19 and (26) gives 

2(9-t)]A]~(lO-t)(9-t>(IAl - IDI +2) 

Now assume that a + b = m = lo- t. From (27) and P.18 we obtain (after 
some simplification) 

jA([6+(10-t)(20-3t)] 

~(lO-t)[8-2n-t-(x+2y)-3(8-t)(5-n-t)]. (28) 

Now by P.12.1, (D) . 1s a blue complete graph, so that I DI G n + 1, since 
(E,)~B,,.ThenfromP.l7wehavex+2y~ID~+l~n+2. Usingthisin 
(28) gives 

(Al[6+(10-t)(20-3t)] 

+lO-t)[n(21-3t)+(5-t)(3t-23)+1]. (29) 

Putting t = 4 in (29) and using the fact that n a 23 gives the estimate 
(AJ>n-2,sobyP.l.lwehaveIAl= n - 1. Similarly putting t = 3 in (29) 
andusingna38gives(AI>n-2,sothat)AI=n-1 byP.l.l.Sincenow, 
fromP.l8,IDJ~((n+t)/2fort=3,4,wegetthatx+2y~IDI+l~(n+t 
+2)/2; and now putting this in (28) for each of the cases t = 4, t = 3 gives 
( A ( > n - 1, which is a contradiction. 

This leaves the cases t = 5,6. These are easy because of P.17, which 
implies that for these values of t, we get a + b G 1~ 4 < lo- t. n 

Proof of Theorem 3(ii). By P.20 and the minimality condition imposed 
on “2(?(m) (m=lO-t) it follows that u=x and y=b. Write 8=a+2b. 
From (27) (see P.20) and P.18, we have 

-(8-t)[(lO-t)()AI-n-t+3)+r(lO-t)-2281. (30) 
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Collecting the terms involving 1 A) on the left hand side of this inequality, we 
see that the coefficient of ( A 1 is at least (9 - t)(8 - t) - $, which, since t G 6, 
is positive. Therefore, using P.l.l and (30) 

-[8-t)((lO-t)(6-t)-201. (31) 

Hence 

6(n-l)>(lO-t)(2n-t-0+4) 

-3(8- t)[(lO- t)(6- t)-201. (32) 

Hence 

2(7--t)& -6+(lO-t)(t-7)(3t-20)+(5t-38)8. (33) 

When t E { 3,5,6}, (33) gives a contradiction of the magnitude of n. However, 
when t = 4 we obtain only that n G 23. Now suppose t = 4 and n = 23. From 
(33) we have 

132 < 6n < 138- 180. 

Hence B = 0. Put n = 23, t = 4, and 8 =O in Equation (31) to obtain a 
contradiction. This is the final contradiction. n 

REMARKS. 

(i) We do not know how sharp the bounds are in Theorem 3. It is true 
that r(B,,B,)=2n+6 when n=ll,and r(B,, B,)=2n+3 (na38). 

Suppose r( B,, B,) = 2n +4 when n = 37. Then there exists a coloring 

(E,> E,) of &+3 such that (E,) z B, and (E,) g B,. Write G = (E,). If G 
is strongly regular, we shall call the coloring a strongly regular coloring. In 
this case G must have parameters (77,50,36,26), which is impossible by the 
integrality condition. Of course this says very little about the existence of a 
general coloring (E,, E,) of K2n+3. Again if r(Ba, B,) = 2n t-5 when n = 21 

then any strongly regular coloring of Kant4 would imply the existence of a 
strongly regular graph G with parameters (46,29,20,15). Once more, these 
parameters do not satisfy the integrality condition. n 

(ii) If r(B,, B,) = 2n +5 when n = 22, then there exists no strongly 
regular coloring of K,,. We can give some information about any coloring of 
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K,, such that (E,) $ B, and (E,) 2 B,,. As in the proof of Theorem 3(ii), 
put t = 4, 19 = 0, n = 22 in (30) to obtain 1 A 1 = 21. From (27) 1 D 1 3 8, and 
fromP.18,IDI~8.HenceIDI=8andJBI+ICI=17.From(26),A(m)~60. 
But since B(d,,d,)<4 for all {i,j}~??(rrz), this means A(m)=60. In 
particular8(di,di)=4forallsuchi,i. Thisimplies IC,(d)l=l foralldE D, 

and IC,(difMi)l = 0. Th is establishes a bijection between C and D, so that 
ICI =8 and so IB( =9. Furthermore (D),(C),(B) are blue complete 
graphs, and the only red edges from C to D, and from D to B, are matchings 
of size 8. n 

The authors are even more than usual indebted to the referee for his 
extremely helpful comments and for his correction of an error in the proof of 
Theorem 3. The first author would like to thank John Sheehan and the 
University of Aberdeen for their hospitality during the fall semester of 1980. 
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