Strongly Regular Graphs and Finite Ramsey Theory

R. J. Faudree and C. C. Rousseau
Department of Mathematics
Memphis State University
Memphis, Tennessee 38152
and
J. Sheehan
University of Aberdeen
Aberdeen, Scotland

Submitted by N. Biggs

Abstract

Some connections between strongly regular graphs and finite Ramsey theory are drawn. Let B_{n} denote the graph $K_{2}+\bar{K}_{n}$. If there exists a strongly regular graph with parameters (v, k, λ, μ), then the Ramsey number $r\left(B_{\lambda+1}, B_{v-2 k+\mu-1}\right) \geqslant v+1$. We consider the implications of this inequality for both Ramsey theory and the theory of strongly regular graphs.

INTRODUCTION

We discuss some connections between strongly regular graphs and finite Ramsey theory. The ideas involved in the theory of strongly regular graphs are linear algebraic, and their consequences are employed in this paper, even though linear algebraic techniques do not appear explicitly. Thus this paper can be regarded as an instance of the application of those techniques in another, related field. All graphs in this paper are both finite and simple. Let G_{1} and G_{2} be graphs. Then the Ramsey number, $r\left(G_{1}, G_{2}\right)$, of G_{1} and C_{2} is the smallest integer n such that in any 2 -coloring (E_{1}, E_{2}) of the edges of K_{n} either $\left\langle E_{1}\right\rangle \supseteq G_{1}$ or $\left\langle E_{2}\right\rangle \supseteq G_{2}$. So, thinking of E_{1} and E_{2} as being "red" and "blue" edges respectively, if the edges of K_{n} are colored red and blue, then there exists either a red G_{1} or a blue G_{2}. Furthermore, since n is minimal, there must exist a graph G on $n-1$ vertices such that $G \nsupseteq G_{1}$ and its complement $\bar{G} \nsupseteq G_{2}$. A strongly regular graph with parameters (v, k, λ, μ) [or more briefly we say a (v, k, λ, μ)-graph] is a graph which is regular of degree
k on v vertices and is such that there exist exactly $\lambda(\mu)$ vertices mutually adjacent to any two distinct adjacent (nonadjacent) vertices. Excellent elementary introductory articles on strongly regular graphs by Cameron and Seidel appear in [1] and [3] respectively. Notice that if G is a (v, k, λ, μ)-graph, then \bar{G} is a $(v, v-\mathrm{I}-k, v-2 k+\mu-2, v-2 k+\lambda)$-graph. Now let $B_{n}(n \geqslant \mathrm{I})$ denote the graph $K_{2}+\bar{K}_{n}$ (see [9] for notation). Then the interaction between strongly regular graphs and Ramsey theory which we wish to discuss is made formally by the following observation.

Observation. If there exists $a(v, k, \lambda, \mu)$-graph G, then

$$
r\left(B_{\lambda+1}, B_{v-2 k+\mu-1}\right) \geqslant v+1
$$

This follows because $G \nsupseteq B_{\lambda+1}, \bar{G} \nsupseteq B_{v-2 k+\mu-1}$, and G has exactly v vertices. Now we can consider this inequality from two viewpoints. If a particular (v, k, λ, μ)-graph exists, then this determines a lower bound for the corresponding Ramsey number. We give an example of this approach in Section 1 . On the other hand, if we can independently determine an upper bound for a particular Ramsey number, this gives some information on the nonexistence of strongly regular graphs with the appropriate parameters (and usually of course on the nonexistence of a much larger class of graphs). We take this viewpoint in Section 2. We mention [6], [7], [10], [11], [12], [13], and an article by T. D. Parsons in [1] for readers interested in this area.

This paper essentially contains just two original theorems, viz., Theorem 2 and Theorem 3. These theorems are discussed in Section 2 but not proved. We include their proofs as appendices. We do not recommend the reader to pursue all the details of these proofs, but simply to note their elementary nature and their dependence on the lemma stated at the beginning of Appendix 1.

1. A SPECIAL CASE

We prove in [12] the following theorem and corollary:
Theorem 1. If $2(m+n)+1>(n-m)^{2} / 3$, then $r\left(B_{m}, B_{n}\right) \leqslant 2(m+n$ $+1)$. By refinement, $r\left(B_{n-1}, B_{n}\right) \leqslant 4 n-1$ and, if $n \equiv 2$ (mod3), then $r\left(B_{n-2}, B_{n}\right) \leqslant 4 n-3$.

Corollary. If $4 n+1$ is a prime power, then $r\left(B_{n}, B_{n}\right)=4 n+2$. If $4 n+1$ cannot be expressed as the sum of two integer squares, then $r\left(B_{n}, B_{n}\right)$ $\leqslant 4 n+1$. In the first example of the latter, $r\left(B_{5}, B_{5}\right)=21$.

The proof of Theorem 1 yields, as pointed out by T. D. Parsons [1], $r\left(B_{m}, B_{n}\right) \leqslant m+n+2+\left[\frac{2}{3} \sqrt{3\left(m^{2}+m n+n^{2}\right)}\right]$. We can indicate the main idea of the proof of the theorem by directly proving the Corollary. This proof illustrates the first viewpoint on the observation made in the introduction.

Proof of the Corollary. Let $p, n \geqslant 1$. Suppose there exists a 2 -coloring $\left(E_{1}, E_{2}\right)$ of the edges of K_{p} such that $\left\langle E_{i}\right\rangle \nsupseteq B_{n}(i=1,2)$. Let M be the number of monochromatic triangles produced by this coloring. Then a classical result of Goodman [8] gives

$$
\begin{equation*}
M \geqslant \frac{p(p-1)(p-5)}{24} \tag{1}
\end{equation*}
$$

On the other hand, since on each red (blue) edge there exist at most $n-1$ red (blue) triangles,

$$
\begin{equation*}
M \leqslant \frac{\left|E_{1}\right|(n-1)+\left|E_{2}\right|(n-1)}{3}=\frac{p(p-1)(n-1)}{6} \tag{2}
\end{equation*}
$$

From (1) and (2), $p \leqslant 4 n+1$. Hence $r\left(B_{n}, B_{n}\right) \leqslant 4 n+2$. Suppose $p=4 n+1$. Then equality holds in (1) and (2). Write $G=\left\langle E_{1}\right\rangle$. Goodman's result also tells us that since equality holds in (1), G is regular of degree $2 n$. Equality in (2) implies that on each edge of G there are exactly $n-1$ triangles and on each edge of \bar{G} there are exactly $n-1$ triangles. So G is a $(4 n+1,2 n, n-$ $1, n)$-graph. Hence, using our observation, $r\left(B_{n}, B_{n}\right)=4 n+2$ if and only if there exists a $(4 n+1,2 n, n-1, n)$-graph. Such graphs [5] are called conference graphs and are well known to exist if $4 n+1$ is a prime power. No such graph exists if $4 n+1$ cannot be expressed as the sum of two integer squares. In the first example of the latter, $r\left(B_{5}, B_{5}\right)=21$. This is proved by giving [12] a direct construction of a graph on 20 vertices with the required properties.

2. RESULTS

We prove in the appendices:

Theorem 2. Suppose $1 \leqslant k<n$. Then $r\left(B_{k}, B_{n}\right)=2 n+3$ for $n \geqslant$ $(k-1)\left(16 k^{3}+16 k^{2}-24 k-10\right)+1$.

Theorem 3.
(i) $r\left(B_{1}, B_{n}\right)=2 n+3(n \geqslant 2)$.
(ii) $2 n+3 \leqslant r\left(B_{2}, B_{n}\right) \leqslant \begin{cases}2 n+6 & (2 \leqslant n \leqslant 11), \\ 2 n+5 & (12 \leqslant n \leqslant 22), \\ 2 n+4 & (23 \leqslant n \leqslant 37), \\ 2 n+3 & (n \geqslant 38) .\end{cases}$

Corollary. $\quad r\left(B_{2}, B_{n}\right)=2 n+6, n=2,5,11$.

Comment. We now simply interpret these results (or at least some of them) in the context of our viewpoint that upper bounds for Ramsey numbers provide information on the existence of certain strongly regular graphs.

Let $t \geqslant 1$. Write $n=3 t-1$, and let $G(n)$ denote (if it exists) a $(6 t+3,2 t$ $+2,1, t+1$)-graph. Then if $G(n)$ exists, $r\left(B_{2}, B_{n}\right) \geqslant 2 n+6$, and so by Theorem 3 (ii), $r\left(B_{2}, B_{n}\right)=2 n+6$. Now someone (see Cameron [1]) with knowledge of the theory of strongly regular graphs would proceed as follows. If $G(n)$ exists, then (using the so-called integrality condition)

$$
\frac{(v-1)(\mu-\lambda)-2 k}{\sqrt{(\mu-\lambda)^{2}+4(k-\mu)}}
$$

is an integer, where $k=2 t+2, \lambda=1, \mu=t+1$, and $v=6 t+3$. Hence $t=1,2,4,10$. The line graph $L\left(K_{3,3}\right)$ of $K_{3,3}$, the complement of $L\left(K_{6}\right)$, and the line graph of the 27 lines on a cubic surface show respectively that $G(2)$, $G(5)$, and $G(11)$ exist. However, as yet we have not determined whether $G(29)$ exists. The only other general necessary conditions for the existence of a (v, k, λ, μ)-graph are the so-called Krein conditions (see Seidel [3]). This states that if

$$
r+s=\lambda-\mu \text { and } r s=\mu-k \quad(r>s)
$$

then
(i) $(r+1)(k+r+2 r s) \leqslant(k+r)(s+1)^{2}$,
(ii) $(s+1)(k+s+2 r s) \leqslant(k+s)(r+1)^{2}$.

In our case $r+s=-10$, $r s=-11$, and so $r=1, s=-11$. We see that these values of r, s, and $k=22$ do not satisfy the second Krein condition. Hence no $G(29)$ exists.

Now suppose we know nothing about the theory of the existence of strongly regular graphs. Then, by Theorem 3(ii), no $G(n)$ exists for $n \geqslant 12$. So in particular $G(29)$ does not exist. Hence we do not require the Krein conditions to prove the nonexistence of $G(29)$. However, against this the existence of $G(8)$ is undecided by our Ramsey theory, whereas the integrality test shows that no $G(8)$ exists.

Generally we may interpret Theorems 2 and 3 as follows: "if $r\left(B_{m}, B_{n}\right) \leqslant$ N, then there exists no ($v, k, m-1, n+2 k-v+1$)-graph with $v \geqslant N$."

Of course a much stronger statement is also true, viz., for $v \geqslant N$ there exists no graph G on v vertices such that: (i) on each edge of G there are at most $m-1$ triangles, and (ii) on each edge of \bar{G} there are at most $n-1$ triangles.

3. CONJECTURES

We have conjectured in [12]:

Conjecture 1. There exists a constant $A>0$ such that

$$
r\left(B_{m}, B_{n}\right) \leqslant 2(m+n+1)+A
$$

Our theorems support this conjecture, although of course they are a very long way from giving the whole picture. A well-known (253, 112, 36, 60)-graph shows that $r\left(B_{37}, B_{88}\right) \geqslant 254$ and so $A \geqslant 2$. In this context, a $(275,112,30,56)$-graph and a $(162,56,10,24)$-graph show respectively that $r\left(B_{31}, B_{106}\right) \geqslant 276$ and $r\left(B_{11}, B_{73}\right) \geqslant 163$. Notice that these parameters are well away from the parabolic region of Theorem 1 . Conjecture I would imply, if true, the truth of:

Conjecture 2. There exists a constant $A(A \geqslant 2)$ such that for every (v, k, λ, μ)-graph we have

$$
2(\alpha+\beta)-v \leqslant A
$$

where $\alpha=k-\lambda-1$ and $\beta=k-\mu$.

Comment. This conjecture is true for conference graphs. It is also true when $\lambda=\mu$. For readers not familiar with the parameters α and β, it is worthwhile recalling in this context that if we write $l=v-k-1$, then since
$k(k-\lambda-1)=l \mu$,

$$
\frac{\alpha}{l}+\frac{\beta}{k}=1
$$

Finally we would like to mention that if instead of discussing $r\left(B_{m}, B_{n}\right)$ we consider the Ramsey number $r\left(K_{m}+\bar{K}_{n}\right)$, then in [6] and [13] conference graphs are used to provide lower bounds. In [13] especially the asymptotic lower bounds are discussed in some depth.

APPENDIX 1. PROOF OF THEOREM 2

Almost all of our notation in this section will be standard [2, 4, 9]. There is one exception. Let G be a graph and $x \in V(G)$. Then $N(x)$ denotes the neighborhood of G, and for any subset $Y \subseteq V(G)$ we write

$$
Y(x)=: N(X) \cap Y
$$

Furthermore if $x_{1}, x_{2} \in V(G)$ we write

$$
Y\left(x_{1} \cap x_{2}\right)=: Y\left(x_{1}\right) \cap Y\left(x_{2}\right)
$$

and

$$
Y\left(x_{1} \cup x_{2}\right)=: Y\left(x_{1}\right) \cup Y\left(x_{2}\right)
$$

This is simply a notational device to restrict the number of symbols used.
In the proof of the theorem below we shall need to consider a 2 -coloring (E_{1}, E_{2}) of the edges of $K_{2 n+3}(n \geqslant 1)$. As above, we call the edges of E_{1} red and those of E_{2} blue. In general a suffix $i(i=1,2)$ will refer to the i th color. For example, if $v \in V(G)$, then $N_{1}(v)$ is the red neighborhood of v, and if $Y \subseteq V\left(K_{2 n+3}\right)$, then $Y_{2}(v)$ is the blue neighborhood of v contained in Y. Again if $Y \subseteq V\left(K_{2 n+3}\right)$, then $\langle Y\rangle_{1}$ is the subgraph of $K_{2 n+3}$ with vertex set Y and edge set consisting of all red edges with both end vertices in Y. We abuse this notation very slightly when we present and use the next lemma, but it is only in this context that we shall do this and no confusion should arise. This lemma plays a crucial role in the proofs of both Theorems 2 and 3.

Lemma. Let $A_{1}, A_{2}, \ldots, A_{m}(m \geqslant 2)$ be subsets of a finite set A. Suppose δ and μ are integers such that for all $i, j \in\{1,2, \ldots, m\}, i \neq j$, we have $\left|A_{i} \cup A_{j}\right| \geqslant \delta$ and $\left|A_{i} \cap A_{j}\right| \leqslant \mu$. Then
(1) $2(m-1)|A| \geqslant m(m-1) \delta-2(m-2)\left(\Sigma\left|A_{i} \cap A_{i}\right|\right)$, where the summation is over all unordered pairs $\{i, j\}, i, j \in\{1,2, \ldots, m\}, i \neq j$.
(2) $2|A| \geqslant m \delta-m(m-2) \mu$.

Proof. Choose $i, j \in\{1,2, \ldots, m\}, i \neq j$. Then

$$
\left|A_{i}\right|+\left|A_{i}\right|=\left|A_{i} \cup A_{i}\right|+\left|A_{i} \cap A_{j}\right| .
$$

Summing over all possible such pairs i and j we obtain

$$
\begin{equation*}
(m-1)\left(\sum_{i=1}^{m}\left|A_{i}\right|\right)=\sum_{i \neq i}\left|A_{i} \cup A_{j}\right|+\sum_{i \neq i}\left|A_{i} \cap A_{i}\right| . \tag{3}
\end{equation*}
$$

But

$$
\begin{equation*}
|A| \geqslant\left|\bigcup_{i=1}^{m} A_{i}\right| \geqslant \sum_{i=1}^{m}\left|A_{i}\right|-\sum_{i \neq i}\left|A_{i} \cap A_{i}\right| \tag{4}
\end{equation*}
$$

The lemma now follows from (3), (4) and the definitions of δ and μ.
Theorem 2. Suppose k and n are integers such that $1 \leqslant k<n$. Then

$$
r\left(B_{k}, B_{n}\right)=2 n+3
$$

provided $n \geqslant(k-1)\left(16 k^{3}+16 k^{2}-24 k-10\right)+1$.

Proof. We may in fact suppose $k>1$, since the case $k=1$ is proved in [12]. Since $K_{n+1, n+1}$ does not contain a B_{k}, and its complement does not contain a B_{n} we have

$$
\begin{equation*}
r\left(B_{k}, B_{n}\right) \geqslant 2 n+3 \tag{5}
\end{equation*}
$$

Unfortunately to prove equality is not so straightforward. Suppose that there is a 2-coloring (E_{1}, E_{2}) of the edges of $K_{2 n+3}$ such that $\left\langle E_{1}\right\rangle \nsupseteq B_{k}$ and $\left\langle E_{2}\right\rangle \nsupseteq B_{n}$. Suppose $n \geqslant(k-1)\left(16 k^{3}+16 k^{2}-24 k-10\right)+1$. Choose $\left(E_{1}, E_{2}\right)$
to be a 2 -coloring of the edges of $K_{2 n+3}$ such that $\left\langle E_{1}\right\rangle \nsupseteq B_{k}$ and $\left\langle E_{2}\right\rangle \nsupseteq B_{n}$. Choose $\alpha, \beta \in V\left(k_{2 n+3}\right)$ so that $\alpha \beta \in E_{2}$ and $\left|N_{1}(\alpha) \cap N_{1}(\beta)\right|$ is as large as possible. Write $D=N_{1}(\alpha) \cap N_{1}(\beta), A=N_{2}(\alpha) \cap N_{2}(\beta), \quad B=N_{2}(\alpha) \backslash A, C=$ $N_{2}(\beta) \backslash A$, and $H=B \cup C \cup D$ (see Figure 1; the broken lines indicate red edges). We assume $|B| \geqslant|C|$.

We emphasize the choice, in particular the maximality, of $|D|$. It will play a prominent role throughout the subsequent arguments. We proceed by a series of propositions.

Proposition 1.
(1) $|A| \leqslant n-1$,
(2) $|H|=(2 n+1)-|A| \geqslant n+2$,
(3) $\left|(B \cup D)_{1}(b)\right| \leqslant k-1(b \in B),\left|(C \cup D)_{1}(c)\right| \leqslant k-1(c \in C),\left|B_{1}(d)\right|$ $\leqslant k-1,\left|C_{1}(d)\right| \leqslant k-1,\left|D_{1}(d)\right| \leqslant k-1(d \in D)$,
(4) $\left|H_{1}(x)\right| \leqslant(k-1)+|D|,\left|D_{1}(x)\right| \leqslant k-1(x \in B \cup C)$,
(5) $\left|H_{1}(d)\right| \leqslant 2(k-1)(d \in D)$,
(6) $\left|H_{2}(x)\right| \geqslant(|H|-1)-\max \{2(k-1),(k-1)+|D|\}(x \in H)$.

Proof. The proof follows directly from the various definitions. For example Proposition 1(4) (which we abbreviate to P.I.4) is proved by using P.1.3 and the maximality of $|D|$.

Fig. 1.

When the reader is in doubt, he should refer back to this proposition, which will not always be cited.

Proposition 2. $\langle H\rangle_{2} \supseteq K_{3}$.
Proof. Write $G=\langle B\rangle_{2}$. Then the minimal degree, $\delta(G)$, of G satisfies, using P.1.3,

$$
\begin{equation*}
\delta(G) \geqslant|B|-k . \tag{6}
\end{equation*}
$$

If $G \nsupseteq K_{3}$, then, by Turan's theorem [4],

$$
\begin{equation*}
|E(G)| \leqslant|B|^{2} / 4 . \tag{7}
\end{equation*}
$$

Hence, from (6) and (7), $|B| \leqslant 2 k$. Therefore, using P.l.I and $|B| \geqslant|C|$,

$$
\begin{align*}
|D| & =(2 n+1)-(|A|+|B|+|C|) \\
& \geqslant(n+2)-4 k . \tag{8}
\end{align*}
$$

We now use the same argument for $K=:\langle D\rangle_{2}$. Again if $K \nsupseteq K_{3},|D| \leqslant 2 k$. So from (8), $n \leqslant 6 k-2$. This is a contradiction.

Proposition 3. $|D| \geqslant 2 k^{2}+1$.

Proof. Let v_{1}, v_{2}, v_{3} be the vertices of a triangle in $\langle H\rangle_{2}$. Write $\theta=$ $\max \{2(k-1), k-1+|D|\}$. Then, from P.1.6, for $i, j \in\{1,2,3\}, i \neq i$,

$$
\begin{equation*}
\left|H_{2}\left(v_{i} \cap v_{i}\right)\right| \geqslant|H|-2(\theta+1) \tag{9}
\end{equation*}
$$

Since $\left\langle E_{2}\right\rangle \nsupseteq B_{n}$, from (9),

$$
\begin{align*}
\left|A_{2}\left(v_{i} \cap v_{i}\right)\right| & \leqslant(n-1)-(|H|-2(\theta+1)) \\
& =|A|-n+2 \theta . \tag{10}
\end{align*}
$$

By the maximality of $|D|$, for all pairs i and j above, $\left|A_{1}\left(v_{i} \cap v_{j}\right)\right| \leqslant|D|$. Hence

$$
\begin{equation*}
\left|A_{2}\left(v_{i} \cup v_{i}\right)\right| \geqslant|A|-|D| . \tag{11}
\end{equation*}
$$

Write $A_{i}=A_{2}\left(v_{i}\right)(i=1,2,3), \mu=|A|-n+2 \theta, \delta=|A|-|D|$, and $m=3$.

Then from the lemma, (10), (11), and P.1.1,

$$
\begin{equation*}
3|D| \geqslant(n+2)-6 \theta \tag{12}
\end{equation*}
$$

Now suppose $\theta=2(k-1)$. Then $|D| \leqslant k-1$, and from (12), $n \leqslant 15 k-17$, which is not true. On the other hand, if $\theta=(k-1)+|D|$, then

$$
\begin{equation*}
|D| \geqslant \frac{n-6 k+8}{9} \tag{13}
\end{equation*}
$$

and so from (13) and the magnitude of $n,|D| \geqslant 2 k^{2}+1$.

Proposition 4. $\langle D\rangle_{1}$ has at least $2 k+1$ independent vertices.
Proof. Let $G=\langle D\rangle_{1}$. Then, from P.1.3 and P.3, G is a graph with maximal degree at most $k-1$, and G has at least $2 k^{2}+1$ vertices. The result now follows as an elementary exercise in graph theory.

Proposition 5. $|D| \geqslant[(2 k-1)|A|] /(2 k+1)-\left(8 k^{2}-14 k+3\right)$.

Proof. Let $v_{1}, v_{2}, \ldots, v_{2 k+1}$ be distinct independent vertices of $\langle D\rangle_{1}$. Let $m=2 k+1$, and write $A_{i}=A_{2}\left(v_{i}\right)(i=1,2, \ldots, m)$. Now with minor modifications (allowing for the fact that the v_{i} 's belong not only to H but also to D) we repeat the argument of P.3. Let $i, j \in\{1,2, \ldots, m\}, i \neq j$. From P.I. 5

$$
\left|H_{2}\left(v_{i} \cap v_{i}\right)\right| \geqslant 2[|H|-2-2(k-1)]-(|H|-2)
$$

Hence, since $\left\langle E_{2}\right\rangle \nsupseteq B_{n}$ and using P.1.2,

$$
\begin{align*}
\left|A_{i} \cap A_{i}\right| & \leqslant(n-1)-\left|H_{2}\left(v_{i} \cap v_{j}\right)\right| \\
& \leqslant(n-1)-|H|+4(k-1)+2 \\
& \leqslant 4 k-5 \tag{14}
\end{align*}
$$

Again, by the maximality of $|D|$, and since $\alpha, \beta \in N_{1}\left(v_{i}\right) \cap N_{1}\left(v_{i}\right)$, we have $\left|A_{1}\left(v_{i} \cap v_{j}\right)\right| \leqslant|D|-2$. Hence

$$
\begin{equation*}
\left|A_{i} \cup A_{j}\right| \geqslant|A|-|D|+2 \tag{15}
\end{equation*}
$$

Write $\delta=|A|-|D|+2, \mu=4 k-5$. Then the result follows from the lemma, using $m=2 k+1$ and Equations (14) and (15).

Proposition 6.

(1) If $x_{1}, x_{2} \in D$ and $x_{1} x_{2} \in E_{2}$, then

$$
\left|H_{2}\left(x_{1} \cap x_{2}\right)\right| \geqslant n-4(k-1)
$$

(2) $|A| \geqslant n-4(k-1)$.

Proof. (1): From P.1.5

$$
\begin{align*}
\left|H_{2}\left(x_{1} \cap x_{2}\right)\right| & \geqslant(|H|-2)-4(k-1) \\
& =(2 n-1)-|A|-4(k-1) \tag{16}
\end{align*}
$$

The result now follows from P.1.1
(2): Since $|D| \geqslant 2 k^{2}+1$ and $\langle D\rangle_{1} \nsupseteq B_{k}$, there exists at least one blue edge $x_{1} x_{2}$ with $x_{i} \in D, i=1,2$. The result now follows from (16) and the fact that $\left|H_{2}\left(x_{1} \cap x_{2}\right)\right| \leqslant n-1$, since $\langle D\rangle_{2} \nsupseteq B_{n}$.

Proposition 7. $\langle D\rangle_{1}$ does not contain 2 independent edges $x_{1} y_{1}$ and $x_{2} y_{2}$ such that all of $x_{1} x_{2}, x_{1} y_{2}, y_{1} x_{2}, y_{1} y_{2}$ are blue edges.

Proof. Suppose $\langle D\rangle_{1}$ does contain 2 such independent edges. Then we may choose $x_{i}, y_{i} \in D(i=1,2)$ so that $x_{1} y_{1}$ and $x_{2} y_{2}$ are red edges and such that $x_{1} x_{2}, x_{1} y_{2}, y_{1} x_{2}, y_{1} y_{2}$ arc all blue edges. Then, for $i=1,2$, since $\alpha, \beta \in$ $N_{1}\left(x_{i} \cap y_{i}\right)$ and since $\left\langle E_{1}\right\rangle \nsupseteq B_{k}$,

$$
\left|A_{1}\left(x_{i} \cap y_{i}\right)\right| \leqslant k-3 .
$$

Hence

$$
\begin{equation*}
\left|A_{2}\left(x_{i} \cup y_{i}\right)\right| \geqslant|A|-(k-3) \tag{17}
\end{equation*}
$$

Therefore, with no loss of generality, we may suppose that

$$
\begin{equation*}
\left|A_{2}\left(x_{1}\right)\right| \geqslant \frac{|A|-(k-3)}{2} \tag{18}
\end{equation*}
$$

Now, from (17),

$$
\begin{equation*}
\left|A_{2}\left(x_{1}\right) \backslash A_{2}\left(x_{2} \cup y_{2}\right)\right| \leqslant k-3 . \tag{19}
\end{equation*}
$$

Therefore from (19), again with no loss of generality, we may suppose that

$$
\begin{equation*}
\left|A_{2}\left(x_{1} \cap x_{2}\right)\right| \geqslant \frac{\left|A_{2}\left(x_{1}\right)\right|-(k-3)}{2} \tag{20}
\end{equation*}
$$

Hence, from P.6.1, P.6.2, (18), and (20), and since $\left\langle E_{2}\right\rangle \nsupseteq B_{n}$,

$$
\begin{aligned}
n-1 & \geqslant\left|A_{2}\left(x_{1} \cap x_{2}\right)\right|+\left|H_{2}\left(x_{1} \cap x_{2}\right)\right| \\
& \geqslant \frac{n-7 k+13}{4}+[n-4(k-1)],
\end{aligned}
$$

i.e., $n \leqslant 23 k-33$, which is a contradiction.

Proposition 8. Write $X=B \cup C$, and let $D^{*}=\left\{d \in D:\left|X_{1}(d)\right| \geqslant 1\right\}$. Then

$$
\left|D^{*}\right| \geqslant|D|-\left(2 k^{2}-6 k+7\right)
$$

Proof. Firstly notice that at most one element of D is isolated in $\langle H\rangle_{1}$, i.e., $\left|H_{1}(d)\right| \geqslant 1$ for all but at most one element of D. Otherwise choose two such elements $d_{1}, d_{2} \in D, d_{1} \neq d_{2}$. Then, using P.1.2,

$$
n-1 \geqslant\left|H_{2}\left(d_{1} \cap d_{2}\right)\right| \geqslant|H|-2 \geqslant n .
$$

Now write $G=\langle D\rangle_{1}$. Then G is a graph with at least $2 k^{2}+1$ vertices and maximal degree at most (using P.1.3) $k-1$. Since G has at most one independent edge $x y$, an elementary exercise in graph theory (see Figure 2) shows that G contains at least $|D|-\left[2+2(k-2)+2(k-2)^{2}\right]$ isolated vertices. This, together with the opening remark, proves the proposition.

Fig. 2.

Proposition 9. $\left.|D| \leqslant\left[(2 n+1-|A|)(k-1)+2 k^{2}-6 k+7\right)\right] / k$.

Proof. Let $E_{1}(B \cup C, D)$ denote the set of red edges with one end vertex in $B \cup C$ and the other end vertex in D. Then, from P.8,

$$
\begin{align*}
\left|E_{1}(B \cup C, D)\right| & \geqslant\left|D^{*}\right| \\
& \geqslant|D|-\left(2 k^{2}-6 k+7\right) . \tag{21}
\end{align*}
$$

Since $\left\langle E_{1}\right\rangle \nsupseteq B_{k}$, if $x \in B \cup C$, then $\left|D_{1}(x)\right| \leqslant k-1$. Hence

$$
\begin{align*}
\left|E_{1}(B \cup C, D)\right| & \leqslant|B \cup C|(k-1) \\
& =(2 n+1-|A|-|D|)(k-1) . \tag{22}
\end{align*}
$$

The proposition follows from (21) and (22).

Proof of Theorem 2. From Propositions 5 and 9

$$
\begin{aligned}
& k(2 k-1)|A|-k(2 k+1)\left(8 k^{2}-14 k+3\right) \\
& \quad \leqslant(2 k+1)(2 n+1-|A|)(k-1)+(2 k+1)\left(2 k^{2}-6 k+7\right)
\end{aligned}
$$

Now use P.6.2 to obtain a contradiction to the magnitude of n. Hence $r\left(B_{k}, B_{n}\right) \leqslant 2 n+3$ and so, from (5), $r\left(B_{k}, B_{n}\right)=2 n+3$.

A similar, but very much more delicate, analysis proves Theorem 3(ii). Theorem 3(i) is proved in [12].

APPENDIX 2. PROOF OF THEOREM 3(ii)

The corollary to Theorem 3 is proved in Section 2, and Theorem 3(i) is proved in [12].

Theorem 3(ii).

$$
2 n+3 \leqslant r\left(B_{2}, B_{n}\right) \leqslant \begin{cases}2 n+6 & (2 \leqslant n \leqslant 11) \\ 2 n+5 & (12 \leqslant n \leqslant 22) \\ 2 n+4 & (23 \leqslant n \leqslant 37) \\ 2 n+3 & (n \geqslant 38)\end{cases}
$$

Notation and assumptions. It follows from Theorem 1 that $r\left(B_{2}, B_{n}\right) \leqslant 2 n+6$ for $2 \leqslant n \leqslant 10$. Therefore, we shall assume henceforth that $n \geqslant 11$. Suppose that (E_{1}, E_{2}) is a 2-coloring of the edges of $K_{2 n+t}$ such that $\left\langle E_{1}\right\rangle \nsupseteq B_{2}$ and $\left\langle E_{2}\right\rangle \nsupseteq B_{n}$, and where

$$
t=\left\{\begin{array}{lll}
6 & \text { if } & n-11 \\
5 & \text { if } & 12 \leqslant n \leqslant 22 \\
4 & \text { if } & 23 \leqslant n \leqslant 37, \\
3 & \text { if } & n \geqslant 38
\end{array}\right.
$$

We shall show that the assumption that such a 2 -coloring exists leads to a contradiction, and this will establish the theorem. We retain all the notation introduced in the proof of Theorem 2 (see Appendix 1), i.e. in the case when $t=3$ and n is large. For example α, β, A, B, C, and D are defined as before, and we use the same notational tricks. In P.I we are now dealing with $2 n+t$ vertices rather than simply $2 n+3$ vertices, so P.l. 2 becomes $|H| \geqslant(2 n+t-$ 2) $-|A| \geqslant n+2$. We recall, since this was buried in the proof, that $X=B \cup C$. We shall in addition use the following notation. Let $h_{1}, h_{2} \in H\left(h_{1} \neq h_{2}\right)$. Write $\theta\left(h_{1}, h_{2}\right)=\left|H_{1}\left(h_{1} \cup h_{2}\right)\right|, \omega\left(h_{1}, h_{2}\right)=\left|N_{1}\left(h_{1}\right) \cap N_{1}\left(h_{2}\right) \cap\{\alpha, \beta\}\right|$. The proof now proceeds, as for Theorem 2, by a series of Propositions:

Proposition 10. $\quad r\left(B_{2}, B_{n}\right) \geqslant 2 n+3$.

Proof. Put $k=2$ in Equation (5).

Proposition 11. Let $h_{1}, h_{2} \in H$ and $h_{1} h_{2} \in E_{2}$. Then
(1) $\left|A_{1}\left(h_{1} \cap h_{2}\right)\right| \leqslant|D|-\omega\left(h_{1}, h_{2}\right)$,
(2) $\left|A_{2}\left(h_{1} \cup h_{2}\right)\right| \geqslant|A|-|D|+\omega\left(h_{1}, h_{2}\right)$,
(3) $\left|A_{2}\left(h_{1} \cap h_{2}\right)\right| \leqslant|A|-n-t+3+\theta\left(h_{1}, h_{2}\right)$,
(4) $\left|A_{1}\left(h_{1} \cup h_{2}\right)\right| \geqslant n+t-3-\theta\left(h_{1}, h_{2}\right)$.

Proof. (1): This is an immediate consequence of the definition of D.
(2): This follows from P.11.1.
(3): By P.1.1 and P.1. 2

$$
\begin{aligned}
n-1 & \geqslant\left|A_{2}\left(h_{1} \cap h_{2}\right)\right|+\left|H_{2}\left(h_{1} \cap h_{2}\right)\right| \\
& =\left|A_{2}\left(h_{1} \cap h_{2}\right)\right|+\left[|H|-2-\left|H_{1}\left(h_{1} \cup h_{2}\right)\right|\right] \\
& =\left|A_{2}\left(h_{1} \cap h_{2}\right)\right|+\left[2 n+t-4-|A|-\theta\left(h_{1}, h_{2}\right)\right] .
\end{aligned}
$$

(4): This follows from P.11.3.

Proposition 12. Let $h_{1}, h_{2} \in H\left(h_{1} \neq h_{2}\right)$.
(1) $h_{1} h_{2} \in E_{2}\left(h_{1}, h_{2} \in D\right)$.
(2) $0 \leqslant \theta\left(h_{1}, h_{2}\right) \leqslant 2(|D|+1), \omega\left(h_{1}, h_{2}\right) \geqslant 0$.
(3) $4 \geqslant \theta\left(h_{1}, h_{2}\right) \geqslant t-2 ; \omega\left(h_{1}, h_{2}\right)=2\left(h_{1}, h_{2} \in D\right)$.
(4) $\omega\left(h_{1}, h_{2}\right)=1\left(h_{1} \in B, h_{2} \in D\right.$ or $\left.h_{1} \in C, h_{2} \in D\right)$.
(5) $0 \leqslant \theta\left(h_{1}, h_{2}\right) \leqslant|D|+3, \omega\left(h_{1}, h_{2}\right)=1\left(h_{1} \in X, h_{2} \in D\right)$.

Proof. (1): This follows because $\omega\left(h_{1}, h_{2}\right)=2$.
(2): From P.l. 4 and P.1.5, $\left|H_{1}(x)\right| \leqslant \max \{2, \mathrm{I}+|D|\} \quad(x \in H)$. Hence $\theta\left(h_{1}, h_{2}\right) \leqslant 2(|D|+1)$.
(3): Let $d_{1}, d_{2} \in D$. Then, from P.12.1, P.1.1, and P.1.2,

$$
\begin{aligned}
n-1 & \geqslant\left|H_{2}\left(d_{1} \cap d_{2}\right)\right|=|H|-2-\theta\left(d_{1}, d_{2}\right) \\
& =(2 n+t-2-|A|)-2-\theta\left(d_{1}, d_{2}\right) \\
& \geqslant n+t-3-\theta\left(d_{1}, d_{2}\right)
\end{aligned}
$$

Hence $\theta\left(d_{1}, d_{2}\right) \geqslant t-2$. Also, from P.1.5, $\theta\left(d_{1}, d_{2}\right) \leqslant 4$. By definition $\omega\left(d_{1}, d_{2}\right)=2$.
(4): From the definition of ω.
(5): By P.1.4 and P.1.5.

Proposition 13.
(1) Suppose $|D| \leqslant 2$. Then there exist $h_{1}, h_{2}, h_{3} \in H$ such that $h_{i} h_{j} \in E_{2}$ ($i \neq j ; i, j=1,2,3$).
(2) Suppose $|D|=2$. Then there exist $h_{1}, h_{2} \in D, h_{3} \in H$ such that $h_{3} h_{i} \in$ $E_{2}, i=1,2$.

Proof. Now suppose $|D|=2$. Then $2|B| \geqslant n+t-3 \geqslant 7$. Hence $|B| \geqslant 3$. Let $D=\left\{h_{1}, h_{2}\right\}$. By P.12.1, $h_{1} h_{2} \in E_{2}$. By P.1.3, $\left|B_{1}\left(h_{i}\right)\right| \leqslant 1$. So there exists $h_{3} \in B$ with $h_{3} h_{i} \in E_{2}(i=1,2)$.

Suppose $|D|=1$. Then $2|B| \geqslant n+t-2 \geqslant 8$. Hence $|B| \geqslant 4$. Let $h_{1} \in D$. Since $\left|B_{1}\left(h_{1}\right)\right| \leqslant 1$, there exist $b_{1}, b_{2}, b_{3} \in B_{2}\left(h_{1}\right)$. Now for all $b \in B$, by P.1.3, $\left|B_{1}(b)\right| \leqslant 1$. Hence for some $i, j=1,2,3, i \neq i$, we have $b_{i} b_{i} \in E_{2}$. Write $h_{2}=b_{i}$ and $h_{3}=b_{i}$.

Suppose $|D|=0$. Then $2|B| \geqslant n+t-1 \geqslant 9$. Hence $|B| \geqslant 5$. Since $\left|B_{1}(b)\right| \leqslant 1$ for all $b \in B$, it follows that there exist $h_{1}, h_{2}, h_{3} \in B$ such that $h_{i} h_{i} \in E_{2}(i \neq j ; i, j=1,2,3)$.

Proposition 14.
(1) If $t \in\{5,6\}$ then $|D| \geqslant 2$.
(2) If $t \in\{3,4\}$ then $|D| \geqslant 3$.

Proof. Suppose $|D| \leqslant 2$. Select (see P.13) $h_{1}, h_{2}, h_{3} \in H$ so that $h_{i} h_{j} \in E_{2}$ $(i \neq i ; i, j=1,2,3)$. Write $A_{i}=A_{2}\left(h_{i}\right), i=1,2,3 ; \delta=|A|-|D| ;$ and $\mu=|A|$ $-n-t+5+2|D|$. Then, by P.11.2 and P.12.2, $\left|A_{i} \cup A_{i}\right| \geqslant \delta$, and by P.11.3 and P.12.2, $\left|A_{i} \cap A_{i}\right| \leqslant \mu$. Then, by the second part of the lemma of Appendix 1 (which we shall denote by L.2, etc.) with $m=3$ and using P.1.1,

$$
\begin{equation*}
2(n-1) \geqslant 3(\delta-\mu)=3(n+t-5-3|D|) \tag{23}
\end{equation*}
$$

If $|D| \leqslant 1$ and $t \in\{5,6\}$ or if $|D| \leqslant 2$ and $t \in\{3,4\}$, (23) yields a contradiction to the magnitude of n.

Proposition 15. $|D| \geqslant 3$.

Proof. By P. 14 we may suppose that $t \in\{5,6\}$ and $|D|=2$. Select (see P.13.2) $h_{1}, h_{2} \in D, h_{3} \in H$ so that $h_{3} h_{i} \in E_{2}, i=1,2$. Write $A_{i}=A_{2}\left(h_{i}\right)$, $i=1,2,3, \delta=|A|-|D|+1$, and $\mu=|A|-n+6-t+|D|$. Then, by P.11.2, P.12.3, and P.12.4, $\left|A_{i} \cup A_{i}\right| \geqslant \delta$, and by P.11.3, P.12.3, and P.12.5, $\left|A_{i} \cap A_{j}\right|$ $\leqslant \mu$. Therefore, by L. 2 with $m=3$ and using P.1.1,

$$
2(n-1) \geqslant 3(\delta-\mu)=3(n+t-5-2|D|)=3(n+t-9)
$$

This is a contradiction of the magnitude of n for $t \in\{5,6\}$.

Proposition 16. $|D| \geqslant 10-t, t \in\{3,4,5,6\}$.

Proof. Suppose $|D| \leqslant 9-t$. Since, by P.15, $|D| \geqslant 3$, we may select $h_{1}, h_{2}, h_{3} \in D, h_{i} \neq h_{j}(i \neq j ; i, j=1,2,3)$. By P.12.1, $h_{i} h_{i} \in E_{2}$. Write $A_{i}=$ $A_{1}\left(h_{i}\right), \delta=n-7+t$, and $\mu=|D|-2$. Then, by P.11.4 and P.12.3, $\left|A_{i} \cup A_{i}\right|$ $\geqslant \delta$, and by P.11.1 and P.12.3, $\left|A_{i} \cap A_{i}\right| \leqslant \mu(i \neq u ; i, j=1,2,3)$. Therefore, by L. 2 with $m=3$ and using P.l.l,

$$
2(n-1) \geqslant 3(\delta-\mu)=3(n+t-5-|D|) \geqslant 3(n+2 t-14) .
$$

This is a contradiction of the magnitude of n.

Notation. Let x be any real number. Then $\lfloor x\rfloor$ and $\lceil x\rceil$ denote respectively the lower and upper integer part of x.

Proposition 17. Let $D^{*}=\left\{d \in D:\left|X_{1}(d)\right| \geqslant\left\lceil\frac{t-2}{2}\right\rceil\right\}, t \in\{3,4,5,6\}$. Then $\left|D^{*}\right| \geqslant|D|-1$.

Proof. Suppose $\left|D^{*}\right| \leqslant|D|-2$. Choose $d_{1}, d_{2} \in D \backslash D^{*}$. Then, by P.12.1 and P.12.3,

$$
t-2 \leqslant \theta\left(d_{1}, d_{2}\right) \leqslant\left|X_{1}\left(d_{1}\right)\right|+\left|X_{1}\left(d_{2}\right)\right| \leqslant 2\left(\left\lceil\frac{t-2}{2}\right\rceil-1\right)
$$

This leads to a contradiction.

Notation. Write $\quad x=\left|\left\{d \in D:\left|X_{1}(d)\right|=1\right\}\right| \quad$ and $\quad y=\mid\{d \in D$; $\left.\left|X_{\mathrm{I}}(d)\right|=0\right\} \mid$. Then $0 \leqslant x \leqslant|D|$ and, from P.17, $0 \leqslant y \leqslant 1$. Recall that in general $\left|X_{1}(d)\right| \leqslant 2$.

Proposition 18. $|D| \leqslant\lfloor(2 n+t-|A|+x+2 y-2) / 3\rfloor$.

Proof. Let $E_{1}(D, X)$ denote the set of red edges with exactly one end vertex in D and exactly one end vertex in X. Then, since $\left|D_{1}(x)\right| \leqslant 1$ for all $x \in X$ (P.1.4),

$$
\begin{equation*}
\left|E_{1}(D, X)\right| \leqslant|X|=2 n+t-|A|-|D|-2 . \tag{24}
\end{equation*}
$$

However, since $\left|X_{1}(d)\right| \leqslant 2$,

$$
\begin{equation*}
\left|E_{1}(D, X)\right|-2|D|-(x+2 y) \tag{25}
\end{equation*}
$$

The result now follows from (24) and (25).

Notation. Let $m=10-t(t \in\{3,4,5,6\})$. Then, by P.16, $3 \leqslant m \leqslant|D|$. Choose m distinct elements $d_{1}, d_{2}, \ldots, d_{m} \in D$ so that $\sum_{i=1}^{m}\left|X_{1}\left(d_{i}\right)\right|$ is as small as possible. Write $\mathscr{Q}(m)=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$. Suppose $\mathscr{D}(m)$ contains exactly a elements d with $\left|X_{1}(d)\right|=1$ and exactly b elements d with $\left|X_{1}(d)\right|=0$. Then, by definition, $0 \leqslant a \leqslant x \leqslant|D|$ and $0 \leqslant b \leqslant y \leqslant 1, a+b \leqslant m$. Let $\mathscr{P}(m)$ denote the set of $\binom{m}{2}$ unordered pairs $\{i, j\}, i \neq j$, chosen from the set $\{1,2, \ldots, m\}$. Write

$$
\Lambda(m)=\sum_{O P(m)} \theta\left(d_{i}, d_{i}\right)
$$

Proposition 19. $\quad \Lambda(m) \leqslant 4\binom{m}{2}-(m-1)(a+2 b)$.
Proof. $\left|X_{1}(d)\right| \in\{0,1,2\}$ for all $d \in \mathbb{Q}(m)$, and $\theta\left(d_{i}, d_{j}\right) \leqslant\left|X_{1}\left(d_{i}\right)\right|$ $+\left|X_{1}\left(d_{i}\right)\right|$ for all $\{i, j\} \in \mathscr{P}(m)$. Hence

$$
\begin{aligned}
\Lambda(m) \leqslant & 2\binom{a}{2}+4\binom{m-(a+b)}{2} \\
& +3 a[m-(a+b)]+a b+2 b[m-(a+b)]
\end{aligned}
$$

The result now follows.

Proposition 20. $a+b<10-t$.

Proof. Write $A_{i}=A_{2}\left(d_{i}\right), i=1,2, \ldots, m(m=10-t)$. Let $\delta=|A|-$ $|D|+2$. Then, by P.11.2 and P.12.3, $\left|A_{i} \cup A_{j}\right| \geqslant \delta$, and by P.11.3, $\left|A_{i} \cap A_{i}\right|$ $\leqslant|A|-n-t+3+\theta\left(d_{I}, d_{i}\right)$ for all $\{i, i\} \in \mathscr{P}(m)$. Then, by L.1,

$$
\begin{align*}
2(9-t)|A| & \geqslant(10-t)(9-t)(|A|-|D|+2) \\
& -2(8-t)\left(\sum_{9(m)}(|A|-n-t+3)+\Lambda(m)\right) \tag{26}
\end{align*}
$$

Using P. 19 and (26) gives

$$
\begin{align*}
& 2(9-t)|A| \geqslant(10-t)(9-t)(|A|-|D|+2) \\
& -2(8-t)\left[\sum_{9(m)}(|A|-n-t+3)\right. \\
& \left.\quad+4\binom{10-t}{2}-(9-t)(a+2 b)\right] . \tag{27}
\end{align*}
$$

Now assume that $a+b=m=10-t$. From (27) and P. 18 we obtain (after some simplification)

$$
\begin{align*}
& |A|[6+(10-t)(20-3 t)] \\
& \geqslant(10-t)[8-2 n-t-(x+2 y)-3(8-t)(5-n-t)] \tag{28}
\end{align*}
$$

Now by P.12.1, $\langle D\rangle$ is a blue complete graph, so that $|D| \leqslant n+1$, since $\left\langle E_{2}\right\rangle \nsupseteq B_{n}$. Then from P. 17 we have $x+2 y \leqslant|D|+1 \leqslant n+2$. Using this in (28) gives

$$
\begin{align*}
& |A|[6+(10-t)(20-3 t)] \\
& \quad \geqslant(10-t)[n(21-3 t)+(5-t)(3 t-23)+1] \tag{29}
\end{align*}
$$

Putting $t=4$ in (29) and using the fact that $n \geqslant 23$ gives the estimate $|A|>n-2$, so by P.l.l we have $|A|=n-1$. Similarly putting $t=3$ in (29) and using $n \geqslant 38$ gives $|A|>n-2$, so that $|A|=n-1$ by P.1.1. Since now, from P.18, $|D| \leqslant(n+t) / 2$ for $t-3,4$, we get that $x+2 y \leqslant|D|+1 \leqslant(n+t$ $+2) / 2$; and now putting this in (28) for each of the cases $t=4, t=3$ gives $|A|>n-1$, which is a contradiction.

This leaves the cases $t=5,6$. These are easy because of P.17, which implies that for these values of t, we get $a+b \leqslant 1<4 \leqslant 10-t$.

Proof of Theorem 3(ii). By P. 20 and the minimality condition imposed on $\mathscr{Q}(m)(m=10-t)$ it follows that $a=x$ and $y=b$. Write $\theta=a+2 b$. From (27) (see P.20) and P.18, we have

$$
\begin{align*}
2|A| \geqslant & (10-t)\left(|A|+2-\left|\frac{2 n+t-|A|+\theta-2}{3}\right|\right) \\
& -(8-t)[(10-t)(|A|-n-t+3)+r(10-t)-2 \theta] . \tag{30}
\end{align*}
$$

Collecting the terms involving $|A|$ on the left hand side of this inequality, we see that the coefficient of $|A|$ is at least $(9-t)(8-t)-\frac{1}{3}$, which, since $t \leqslant 6$, is positive. Therefore, using P.1.1 and (30),

$$
\begin{align*}
2(n-1) \geqslant & (10-t)\left(n+1-\left\lfloor\frac{n+t+\theta-1}{3}\right\rfloor\right) \\
& -[8-t)((10-t)(6-t)-2 \theta] . \tag{31}
\end{align*}
$$

Hence

$$
\begin{align*}
6(n-1) \geqslant & (10-t)(2 n-t-\theta+4) \\
& -3(8-t)[(10-t)(6-t)-2 \theta] \tag{32}
\end{align*}
$$

Hence

$$
\begin{equation*}
2(7-t) n \leqslant-6+(10-t)(t-7)(3 t-20)+(5 t-38) \theta . \tag{33}
\end{equation*}
$$

When $t \in\{3,5,6\}$, (33) gives a contradiction of the magnitude of n. However, when $t=4$ we obtain only that $n \leqslant 23$. Now suppose $t=4$ and $n=23$. From (33) we have

$$
132 \leqslant 6 n \leqslant 138-18 \theta
$$

Hence $\theta=0$. Put $n=23, t=4$, and $\theta=0$ in Equation (31) to obtain a contradiction. This is the final contradiction.

Remarks.

(i) We do not know how sharp the bounds are in Theorem 3. It is true that $r\left(B_{2}, B_{n}\right)=2 n+6$ when $n=11$, and $r\left(B_{2}, B_{n}\right)=2 n+3(n \geqslant 38)$.

Suppose $r\left(B_{2}, B_{n}\right)=2 n+4$ when $n=37$. Then there exists a coloring $\left(E_{1}, E_{2}\right)$ of $K_{2 n+3}$ such that $\left\langle E_{1}\right\rangle \nsupseteq B_{2}$ and $\left\langle E_{2}\right\rangle \nsubseteq B_{n}$. Write $G=\left\langle E_{2}\right\rangle$. If G is strongly regular, we shall call the coloring a strongly regular coloring. In this case G must have parameters $(77,50,36,26)$, which is impossible by the integrality condition. Of course this says very little about the existence of a general coloring (E_{1}, E_{2}) of $K_{2 n+3}$. Again if $r\left(B_{2}, B_{n}\right)=2 n+5$ when $n=21$ then any strongly regular coloring of $K_{2 n+4}$ would imply the existence of a strongly regular graph G with parameters $(46,29,20,15)$. Once more, these parameters do not satisfy the integrality condition.
(ii) If $r\left(B_{2}, B_{n}\right)=2 n+5$ when $n=22$, then there exists no strongly regular coloring of K_{48}. We can give some information about any coloring of
K_{48} such that $\left\langle E_{1}\right\rangle \nsupseteq B_{2}$ and $\left\langle E_{2}\right\rangle \nsupseteq B_{22}$. As in the proof of Theorem 3(ii), put $t=4, \theta=0, n=22$ in (30) to obtain $|A|=21$. From (27), $|D| \geqslant 8$, and from P.18, $|D| \leqslant 8$. Hence $|D|=8$ and $|B|+|C|=17$. From (26), $\Lambda(m) \geqslant 60$. But since $\theta\left(d_{i}, d_{i}\right) \leqslant 4$ for all $\{i, j\} \in \mathscr{P}(m)$, this means $\Lambda(m)=60$. In particular $\theta\left(d_{i}, d_{i}\right)=4$ for all such i, j. This implies $\left|C_{1}(d)\right|=1$ for all $d \in D$, and $\left|C_{1}\left(d_{i} \cap d_{j}\right)\right|=0$. This establishes a bijection between C and D, so that $|C|=8$ and so $|B|=9$. Furthermore $\langle D\rangle,\langle C\rangle,\langle B\rangle$ are blue complete graphs, and the only red edges from C to D, and from D to B, are matchings of size 8 .

The authors are even more than usual indebted to the referee for his extremely helpful comments and for his correction of an error in the proof of Theorem 3. The first author would like to thank John Sheehan and the University of Aberdeen for their hospitality during the fall semester of 1980.

REFERENCES

1 L. W. Beineke and R. J. Wilson, Selected Topics in Graph Theory, Academic, London, 1978.
2 N. L. Biggs, Algebraic Graph Theory, Cambridge U.P., Cambridge, 1974.
3 B. Bollobás, Surveys in Combinatorics (Proceedings of the 7th British Combinatorial Conference), Cambridge U.P., Cambridge, 1979.
4 J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
5 P. J. Cameron and J. H. Van Lindt, Graph Theory, Coding Theory and Block Designs, Cambridge U.P., Cambridge, 1975.
6 R. J. Evans, J. Pulham, and J. Sheehan, On the number of complete subgraphs contained in certain graphs, J. Combin. Theory, to appear.
7 R. J. Faudree, C. C. Rousseau, and J. Sheehan, More from the good book, in Combinatorics, Graph Theory and Computing, Utilitas Math. XXI:289-301 (1978).

8 A. W. Goodman, On sets of acquaintances and strangers at any party, Amer. Math. Monthly 66:778-793 (1959).
9 F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
10 T. D. Parsons, Ramsey graphs and block designs, J. Combin. Theory Ser. A 20:12-19 (1976).
11 T. D. Parsons, Ramsey graphs and block designs, 1, Trans. Amer. Math. Soc. 209:33-44 (1975).
12 C. C. Rousseau and J. Sheehan, On Ramsey numbers for books, J. Graph Theory 2:77-87 (1978).
13 A. G. Thomason, Ph.D. Thesis, Cambridge Univ., 1979.

